LTC3400-1
600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT

FEATURES

■ Up to 92% Efficiency
■ Generates 3.3V at 100mA from a Single AA Cell
■ Low Start-Up Voltage: 0.85V
■ V\text{OUT} Connected to V\text{IN} in Shutdown
■ Internal Synchronous Rectifier
■ 2.5V to 5V Output Range
■ Automatic Burst Mode® Operation
■ Logic Controlled Shutdown (<1\mu\text{A})
■ Antiringing Control Minimizes EMI
■ Tiny External Components
■ Low Profile (1mm) SOT-23 Package

APPLICATIONS

■ Pagers
■ MP3 Players
■ Digital Cameras
■ LCD Bias Supplies
■ Handheld Instruments
■ Wireless Handsets
■ GPS Receivers

DESCRIPTION

The LTC®-3400-1 is a synchronous, fixed frequency, step-up DC/DC converter delivering high efficiency in a 6-lead ThinSOT™ package. Capable of supplying 3.3V at 100mA from a single AA cell input, the device contains an internal NMOS switch and PMOS synchronous rectifier.

A switching frequency of 1.2MHz minimizes solution footprint by allowing the use of tiny, low profile inductors and ceramic capacitors. The current mode PWM design is internally compensated, reducing external parts count. The LTC3400-1 features automatic shifting to power saving Burst Mode operation at light loads. In shutdown, V\text{OUT} and V\text{IN} are connected, which allows the input battery to be used for backup power. The LTC3400-1 features low shutdown current of under 1\mu\text{A}.

The LTC3400-1 is offered in the low profile (1mm) SOT-23 package.

LTC, LT and Burst Mode are registered trademarks of Linear Technology Corporation.
ThinSOT is a trademark of Linear Technology Corporation.
US Patent Numbers 5,481,178; 6,580,258; 6,304,066; 6,127,815; 6,498,466; 6,611,131.

TYPICAL APPLICATION

Single Cell to 3.3V Synchronous Boost Converter

![Circuit Diagram](image_url)

Efficiency

![Efficiency Graph](image_url)
LTC3400-1

Absolute Maximum Ratings

(Note 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN Voltage</td>
<td></td>
<td>–0.3V to 6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW Voltage DC</td>
<td></td>
<td>–0.3V to 6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsed (<100ns)</td>
<td></td>
<td>–0.3V to 7V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHDN, FB Voltage</td>
<td></td>
<td>–0.3V to 6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOUT</td>
<td></td>
<td>–0.3V to 6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range (Note 2)</td>
<td>–30°C to 85°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td></td>
<td>–65°C to 125°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 sec)</td>
<td>300°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
2. The LTC3400-1 is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the –30°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

Electrical Characteristics

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25°C$. $V_{IN} = 1.2V$, $V_{OUT} = 3.3V$, unless otherwise specified.

Parameters:

- **Minimum Start-Up Voltage**: $I_{LOAD} = 1mA$
 - Min: 0.85 V
 - Typ: 1 V
- **Minimum Operating Voltage**: $SHDN = V_{IN}$ (Note 4)
 - Min: 0.5 V
 - Typ: 0.65 V
- **Output Voltage Adjust Range**: 2.5 V
- **Feedback Voltage**: ●
 - Min: 1.192 V
 - Typ: 1.23 V
 - Max: 1.268 V
- **Feedback Input Current**: $V_{FB} = 1.25V$ (Note 3)
 - Min: 1 nA
 - Typ: 19 nA
- **Quiescent Current (Burst Mode Operation)**: $V_{FB} = 1.4V$ (Note 5)
 - Min: 0.19 µA
 - Typ: 30 µA
- **Quiescent Current (Shutdown)**: $V_{SHDN} = 0V$, Not Including Switch Leakage, $V_{IN} = V_{OUT}$
 - Min: 0.01 µA
 - Typ: 1 µA
- **Quiescent Current (Active)**: Measured On V_{OUT}
 - Min: 300 µA
 - Typ: 500 µA
- **NMOS Switch Leakage**: $V_{SW} = 5V$
 - Min: 0.1 µA
 - Typ: 5 µA
- **PMOS Switch Leakage**: $V_{SW} = 0V$ (Note 3)
 - Min: 0.1 µA
 - Typ: 5 µA
- **NMOS Switch On Resistance**: $V_{OUT} = 3.3V$
 - Min: 0.35 Ω
 - Typ: 0.20 Ω
- **PMOS Switch On Resistance**: $V_{OUT} = 3.3V$
 - Min: 0.45 Ω
 - Typ: 0.30 Ω
- **NMOS Current Limit**: 600 mA
- **Burst Mode Operation Current Threshold**: (Note 3)
 - Min: 3 mA
- **Current Limit Delay to Output**: (Note 3)
 - Min: 40 ns
- **Max Duty Cycle**: $V_{FB} = 1.15V$
 - ●
 - Min: 80%
 - Typ: 87%
- **Switching Frequency**: ●
 - Min: 0.95 MHz
 - Typ: 1.2 MHz
 - Typ: 1.5 MHz
- **SHDN Input High**: 1 V
- **SHDN Input Low**: 0.35 V
- **SHDN Input Current**: $V_{SHDN} = 5.5V$
 - Min: 0.01 µA
 - Typ: 1 µA

Notes:

3. Specification is guaranteed by design and not 100% tested in production.
4. Minimum V_{IN} operation after start-up is only limited by the battery’s ability to provide the necessary power as it enters a deeply discharged state.
5. Burst Mode operation I_Q is measured at V_{OUT}. Multiply this value by V_{OUT}/V_{IN} to get the equivalent input (battery) current.
TYPICAL PERFORMANCE CHARACTERISTICS

Output Load Burst Mode Threshold vs \(V_{\text{IN}} \)

\[
\begin{align*}
L &= 4.7\mu\text{H} \\
T_A &= 25^\circ\text{C} \\
V_{\text{OUT}} &= 3.3\text{V} \quad V_{\text{OUT}} = 5\text{V}
\end{align*}
\]

\[
\begin{array}{|c|c|}
\hline
V_{\text{OUT}} (\text{mA}) & 1.5 & 2.1 & 2.7 & 3.3 \\
\hline
V_{\text{IN}} (\text{V}) & 0.9 & 1.5 & 2.1 & 2.7 & 3.3 & 3.9 & 4.5 \\
\hline
\end{array}
\]

\[V_{\text{OUT}} = 3.3\text{V} \quad V_{\text{OUT}} = 5\text{V}\]

\[L = 4.7\mu\text{H} \quad T_A = 25^\circ\text{C}\]

\[V_{\text{IN}} (\text{V}) \]

\[0.9 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[0 \quad 10 \quad 20 \]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]

\[\text{VIN (V)}\]

\[0 \quad 1.5 \quad 2.1 \quad 2.7 \quad 3.3 \quad 3.9 \quad 4.5\]

\[\text{OUTPUT CURRENT (mA)}\]
PIN FUNCTIONS

SW (Pin 1): Switch Pin. Connect inductor between SW and V_IN. Optional Schottky diode is connected between SW and V_OUT. Keep these PCB trace lengths as short and wide as possible to reduce EMI and voltage overshoot. If the inductor current falls to zero, or SHDN is low, an internal 100\,Ω anti ringing switch is connected from SW to V_IN to minimize EMI.

GND (Pin 2): Signal and Power Ground. Provide a short direct PCB path between GND and the (–) side of the output capacitor(s).

FB (Pin 3): Feedback Input to the g\textsubscript{m} Error Amplifier. Connect resistor divider tap to this pin. The output voltage can be adjusted from 2.5V to 5V by:

\[V_OUT = 1.23V \times \left[1 + \left(\frac{R1}{R2} \right) \right] \]

SHDN (Pin 4): Logic Controlled Shutdown Input.

SHDN = High: Normal free running operation, 1.2MHz typical operating frequency.

SHDN = Low: Shutdown, quiescent current <1\,µA. 100\,Ω connected between SW and V_IN, V_IN is connected to V_OUT through the internal P-channel MOSFET synchronous rectifier and external inductor.

Typically, SHDN should be connected to V_IN through a 1M pull-up resistor.

V_OUT (Pin 5): Output Voltage Sense Input and Drain of the Internal Synchronous Rectifier MOSFET. Bias is derived from V_OUT. PCB trace length from V_OUT to the output filter capacitor(s) should be as short and wide as possible. V_OUT is connected to V_IN in shutdown through the internal P-channel MOSFET synchronous rectifier.

V_IN (Pin 6): Battery Input Voltage. The device gets its start-up bias from V_IN. Once V_OUT exceeds V_IN, bias comes from V_OUT. Thus, once started, operation is completely independent from V_IN. Operation is only limited by the output power level and the battery’s internal series resistance.

BLOCK DIAGRAM
The LTC3400-1 is a 1.2MHz, synchronous boost converter housed in a 6-lead ThinSOT package. Able to operate from an input voltage below 1V, the device features fixed frequency, current mode PWM control for exceptional line and load regulation. With its low $R_{DS(on)}$ and gate charge internal MOSFET switches, the device maintains high efficiency over a wide range of load current. Detailed descriptions of the three distinct operating modes follow. Operation can be best understood by referring to the Block Diagram.

Low Voltage Start-Up

The LTC3400-1 will start up at a typical V_{IN} voltage of 0.85V or higher. The low voltage start-up circuitry controls the internal NMOS switch up to a maximum peak inductor current of 850mA (typ), with an approximate 1.5μs off-time during start-up, allowing the device to start up into an output load. Once V_{OUT} exceeds 2.3V, the start-up circuitry is disabled and normal fixed frequency PWM operation is initiated. In this mode, the LTC3400-1 operates independent of V_{IN}, allowing extended operating time as the battery can droop to several tenths of a volt without affecting output voltage regulation. The limiting factor for the application becomes the ability of the battery to supply sufficient energy to the output.

Low Noise Fixed Frequency Operation

Oscillator: The frequency of operation is internally set to 1.2MHz.

Error Amp: The error amplifier is an internally compensated transconductance type (current output) with a transconductance (g_m) = 33 microsiemens. The internal 1.23V reference voltage is compared to the voltage at the FB pin to generate an error signal at the output of the error amplifier. A voltage divider from V_{OUT} to ground programs the output voltage via FB from 2.5V to 5V using the equation:

$$V_{OUT} = 1.23V \times \left[1 + \left(\frac{R1}{R2}\right)\right]$$

Current Sensing: A signal representing NMOS switch current is summed with the slope compensator. The summed signal is compared to the error amplifier output to provide a peak current control command for the PWM. Peak switch current is limited to approximately 850mA independent of input or output voltage. The current signal is blanked for 40ns to enhance noise rejection.

Zero Current Comparator: The zero current comparator monitors the inductor current to the output and shuts off the synchronous rectifier once this current reduces to approximately 20mA. This prevents the inductor current from reversing in polarity improving efficiency at light loads.

Antiringing Control: The antiringing control circuitry prevents high frequency ringing of the SW pin as the inductor current goes to zero by damping the resonant circuit formed by L and C_{SW} (capacitance on SW pin).

Burst Mode Operation

Portable devices frequently spend extended time in low power or standby mode, only switching to high power drain when specific functions are enabled. In order to improve battery life in these types of products, high power converter efficiency needs to be maintained over a wide output power range. In addition to its high efficiency at moderate and heavy loads, the LTC3400-1 includes automatic Burst Mode operation that improves efficiency of the power converter at light loads. Burst mode operation is initiated if the output load current falls below an internally programmed threshold (see Typical Performance graph, Output Load Burst Mode Threshold vs V_{IN}). Once initiated, the Burst Mode operation circuitry shuts down most of the device, only keeping alive the circuitry required to monitor the output voltage. This is referred to as the sleep state. In sleep, the LTC3400-1 draws only 19μA from the output capacitor, greatly enhancing efficiency. When the output voltage has drooped approximately 1% from nominal, the LTC3400-1 wakes up and commences normal PWM operation. The output capacitor recharges and causes the LTC3400-1 to reenter sleep if the output load remains less than the sleep threshold. The frequency of this intermittent PWM or burst operation is proportional to load current; that is, as the load current drops further below the burst threshold, the LTC3400-1 turns on less frequently. When the load current increases
above the burst threshold, the LTC3400-1 will resume continuous PWM operation seamlessly. Referring to the Block Diagram, an optional capacitor (C_{FF}) between V_{OUT} and FB in some circumstances can reduce the peak-to-peak V_{OUT} ripple and input quiescent current during Burst Mode operation. Typical values for C_{FF} range from 15pF to 220pF.

APPLICATIONS INFORMATION

PCB LAYOUT GUIDELINES

The high speed operation of the LTC3400-1 demands careful attention to board layout. You will not get advertised performance with careless layout. Figure 1 shows the recommended component placement. A large ground pin copper area will help to lower the chip temperature. A multilayer board with a separate ground plane is ideal, but not absolutely necessary.

COMPONENT SELECTION

Inductor Selection

The LTC3400-1 can utilize small surface mount and chip inductors due to its fast 1.2MHz switching frequency. A minimum inductance value of 3.3\mu H is necessary for 3.6V and lower voltage applications and 4.7\mu H for output voltages greater than 3.6V. Larger values of inductance will allow greater output current capability by reducing the inductor ripple current. Increasing the inductance above 10\mu H will increase size while providing little improvement in output current capability.

The approximate output current capability of the LTC3400-1 versus inductance value is given in the equation below and illustrated graphically in Figure 2.

\[
I_{\text{OUT(MAX)}} = \eta \cdot \left(I_P - \frac{V_{IN} \cdot D}{f \cdot L / 2} \right) \cdot (1 - D)
\]

where:

\(\eta \) = estimated efficiency

\(I_P \) = peak current limit value (0.6A)

\(V_{IN} \) = input (battery) voltage

\(D \) = steady-state duty ratio = \((V_{OUT} - V_{IN})/V_{OUT} \)

\(f \) = switching frequency (1.2MHz typical)

\(L \) = inductance value
The inductor current ripple is typically set for 20% to 40% of the maximum inductor current (I_p). High frequency ferrite core inductor materials reduce frequency dependent power losses compared to cheaper powdered iron types, improving efficiency. The inductor should have low ESR (series resistance of the windings) to reduce the I^2R power losses, and must be able to handle the peak inductor current without saturating. Molded chokes and some chip inductors usually do not have enough core to support the peak inductor currents of 850mA seen on the LTC3400-1. To minimize radiated noise, use a toroid, pot core or shielded bobbin inductor. See Table 1 for some suggested components and suppliers.

Table 1. Recommended Inductors

<table>
<thead>
<tr>
<th>PART</th>
<th>MAX L (µH)</th>
<th>MAX DCR mΩ</th>
<th>HEIGHT (mm)</th>
<th>VENDOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDRH5D18-4R1</td>
<td>4.1</td>
<td>57</td>
<td>2.0</td>
<td>Sumida</td>
</tr>
<tr>
<td>CDRH5D18-100</td>
<td>10</td>
<td>124</td>
<td>2.0</td>
<td>(847) 956-0666</td>
</tr>
<tr>
<td>CDRH3D16-4R7</td>
<td>4.7</td>
<td>105</td>
<td>1.8</td>
<td>www.sumida.com</td>
</tr>
<tr>
<td>CDRH3D16-6R8</td>
<td>170</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR43-4R7</td>
<td>4.7</td>
<td>109</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>CR43-100</td>
<td>10</td>
<td>182</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>CMD4D06-4R7MC</td>
<td>4.7</td>
<td>216</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>CMD4D06-3R3MC</td>
<td>3.3</td>
<td>174</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>DS1608-472</td>
<td>4.7</td>
<td>60</td>
<td>2.9</td>
<td>Coilcraft</td>
</tr>
<tr>
<td>DS1608-103</td>
<td>10</td>
<td>75</td>
<td>2.9</td>
<td>(847) 639-6400</td>
</tr>
<tr>
<td>DO1608C-472</td>
<td>4.7</td>
<td>90</td>
<td>2.9</td>
<td>www.coilcraft.com</td>
</tr>
<tr>
<td>D52LC-4R7M</td>
<td>4.7</td>
<td>84</td>
<td>2.0</td>
<td>Toko</td>
</tr>
<tr>
<td>D52LC-100M</td>
<td>10</td>
<td>137</td>
<td>2.0</td>
<td>(408) 432-8282</td>
</tr>
<tr>
<td>LQH3C4R7M24</td>
<td>4.7</td>
<td>195</td>
<td>2.2</td>
<td>Murata</td>
</tr>
</tbody>
</table>

Output Diode

Use a Schottky diode such as an MBR0520L, PMEG2010EA, 1N5817 or equivalent if the converter output voltage is 4.5V or greater. The Schottky diode carries the output current for the time it takes for the synchronous rectifier to turn on. Do not use ordinary rectifier diodes, since the slow recovery times will compromise efficiency. A Schottky diode is also strongly recommended for output voltages below 4.5V, and will increase converter efficiency by 2% to 3%.
TYPICAL APPLICATIONS

Single Cell to 3.3V Synchronous Boost Converter with Load Disconnect in Shutdown

D1: PHILLIPS PMEG2010EA
L1: SUMIDA CDRH2D18/HP-4R7

R3 510k
R3 510k
D1: 2N3904
Si2305DS

VOUT 3.3V
100mA

R1 1.02M
1%
R2 604k
1%
C2 4.7µF

GND

SINGLE
AA CELL

OFF ON

C1 4.7µF

VIN
VOUT

SW

LTC3400-1

FB

GND

+5 4

-5 4

D2

4.7µH

2

3

6

1

5

34001f
TYPICAL APPLICATIONS

Single Lithium Cell to 5V, 250mA

D1: PHILIPS PMEG2010EA
L1: SUMIDA CDRH2D18/HP-4R7
C1, C2: TAIYO YUDEN JMK212BJ475MG

3.6V to 5V Efficiency

LTC3400: 1
I0 = 4.7µF
L = 4.7µH
Typical Applications

Single Cell AA Cell to ±3V Synchronous Boost Converter

D1, D2: ZETEX FMND7000 Dual Diode
L1: SUMIDA CDRH2D18/HP-4R7

LTC3400-1
PACKAGE DESCRIPTION

S6 Package

6-Lead Plastic TSOT-23

(Reference LTC DWG # 05-08-1636)

RECOMMENDED SOLDER PAD LAYOUT

Per IPC Calculator

NOTE:

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254mm
6. JEDEC PACKAGE REFERENCE IS MO-193

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
Typical Application

Single AA Cell to 2.5V Synchronous Boost Converter

![Circuit Diagram]

PARTS LIST
- **D1:** PHILIPS PMEG2010EA
- **L1:** SUMIDA CDRH2D18/HP-3R7

Related Parts

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT1308A/LT1308B</td>
<td>High Current, Micropower, Single Cell 600kHz DC/DC Converter</td>
<td>5V at 1A with Single Li-Ion Cell, VOUT to 34V</td>
</tr>
<tr>
<td>LT1613</td>
<td>1.4MHz, Single Cell DC/DC Converter in ThinSOT</td>
<td>VIN as Low as 1.1V, 3V at 30mA from Single Cell</td>
</tr>
<tr>
<td>LT1615</td>
<td>Micropower Step-Up DC/DC Converter in ThinSOT</td>
<td>IQ = 20µA, 1µA Shutdown Current, VIN as Low as 1V</td>
</tr>
<tr>
<td>LT1618</td>
<td>1.4MHz Step-Up DC/DC Converter with Current Limit</td>
<td>1.5A Switch, 1.6V to 18V Input Range, Input or Output Current Limiting</td>
</tr>
<tr>
<td>LT1619</td>
<td>High Efficiency Boost DC/DC Controller</td>
<td>1A Gate Drive, 1.1V to 20V Input, Separate VCC for Gate Drive</td>
</tr>
<tr>
<td>LTC1872</td>
<td>ThinSOT Boost DC/DC Controller</td>
<td>50kHz, 2.5V to 9.8V Input</td>
</tr>
<tr>
<td>LT1930/LT1930A</td>
<td>1.2MHz/2.2MHz DC/DC Converters in ThinSOT</td>
<td>VIN = 2.6V to 16V, 5V at 450mA from 3.3V Input</td>
</tr>
<tr>
<td>LT1932</td>
<td>Constant Current Step-Up LED Driver</td>
<td>Drives Up to Eight White LEDs, ThinSOT Package</td>
</tr>
<tr>
<td>LT1946/LT1946A</td>
<td>1.2MHz/2.7MHz Boost DC/DC Converters</td>
<td>1.5A, 36V Internal Switch, 8-Pin MSOP Package</td>
</tr>
<tr>
<td>LT1949</td>
<td>600kHz, 1A Switch PWM DC/DC Converter</td>
<td>1A, 0.5Ω, 30V Internal Switch, VIN as Low as 1.5V, Low-Battery Detect Active in Shutdown</td>
</tr>
<tr>
<td>LTC3400/LTC3400B</td>
<td>600mA, 1.2MHz Synchronous Boost Converters in ThinSOT</td>
<td>Up to 92% Efficiency, 600mA Switch, No Burst Option (LTC3400B)</td>
</tr>
<tr>
<td>LTC3401</td>
<td>1A, 3MHz Micropower Synchronous Boost Converter</td>
<td>1A Switch, Programmable Frequency, 10-Pin MSOP Package</td>
</tr>
<tr>
<td>LTC3402</td>
<td>2A, 3MHz Micropower Synchronous Boost Converter</td>
<td>2A Switch, Programmable Frequency, 10-Pin MSOP Package</td>
</tr>
<tr>
<td>LTC3421</td>
<td>3A, 3MHz Micropower Synchronous Boost Converter</td>
<td>Up to 96% Efficiency, 3A Switch, True Output Disconnect, 4mm x 4mm QFN Package</td>
</tr>
<tr>
<td>LTC3423</td>
<td>1A, 3MHz Micropower Synchronous Boost Converter</td>
<td>1A Switch, Separate Bias Pin for Low Output Voltages</td>
</tr>
<tr>
<td>LTC3424</td>
<td>2A, 3MHz Micropower Synchronous Boost Converter</td>
<td>2A Switch, Separate Bias Pin for Low Output Voltages</td>
</tr>
<tr>
<td>LTC3425</td>
<td>5A, 8MHz, 4-Phase Micropower Synchronous Boost Converter</td>
<td>Up to 95% Efficiency, 5A Switch, True Output Disconnect, IQ = 12µA, QFN Package</td>
</tr>
<tr>
<td>LTC3429</td>
<td>600mA, 500kHz Synchronous Boost Converter in ThinSOT</td>
<td>Up to 96% Efficiency, 600mA Switch, True Output Disconnect, Soft Start</td>
</tr>
</tbody>
</table>