Proximity Detector

Description

The CS209A is a bipolar monolithic integrated circuit for use in metal detection/proximity sensing applications. The IC (see block diagram) contains two on-chip current regulators, oscillator and low-level feedback circuitry, peak detection/demodulation circuit, a comparator and two complementary output stages.

The oscillator, along with an external LC network, provides controlled oscillations where amplitude is highly dependent on the Q of the LC tank. During low Q conditions, a variable low-level feedback circuit provides drive to maintain oscillation. The peak demodulator senses the negative portion of the oscillator envelop and provides a demodulated waveform as input to the comparator. The comparator sets the states of the complementary outputs by comparing the input from the demodulator to an internal reference. External loads are required for the output pins.

A transient suppression circuit is included to absorb negative transients at the tank circuit terminal.

Features

- Separate Current Regulator for Oscillator
- Negative Transient Suppression
- Variable Low-Level Feedback
- Improved Performance over Temperature
- 6mA Supply Current Consumption at VCC = 12V
- Output Current Sink Capability
 - 20mA at 4VCC
 - 100mA at 24VCC

Absolute Maximum Ratings

- Supply Voltage: 24V
- Power Dissipation (TA = 125°C): 200mW
- Storage Temperature Range: -55°C to +165°C
- Junction Temperature: -40°C to +150°C
- Electrostatic Discharge (except TANK pin): 2kV
- Lead Temperature Soldering
 - Wave Solder (through hole styles only): 10 sec. max, 260°C peak
 - Reflow (SMD styles only): 60 sec. max above 183°C, 230°C peak

Package Options

- **14L SO**
- **8L PDIP & SO**

Cherry Semiconductor Corporation
2000 South County Trail, East Greenwich, RI 02818
Tel: (401)885-3600 Fax: (401)885-5786
Email: info@cherry-semi.com
Web Site: www.cherry-semi.com
Electrical Characteristics: \(-40°C \leq T_A \leq 125°C\) unless otherwise specified

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current (I_{CC})</td>
<td>(V_{CC} = 4V)</td>
<td>3.5</td>
<td>6.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 12V)</td>
<td>6.0</td>
<td>11.6</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 24V)</td>
<td>11.0</td>
<td>20.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Tank Current</td>
<td>(V_{CC} = 20V)</td>
<td>-550</td>
<td>-300</td>
<td>-100</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Demodulator Charge Current</td>
<td>(V_{CC} = 20V)</td>
<td>-60</td>
<td>-30</td>
<td>-10</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Output Leakage Current</td>
<td>(V_{CC} = 24V)</td>
<td>0.01</td>
<td>10.0</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>Output (V_{SAT})</td>
<td>(V_{CC} = 4V, IS = 20mA)</td>
<td>60</td>
<td>200</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 24V, IS = 100mA)</td>
<td>200</td>
<td>500</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Oscillator Bias</td>
<td>(V_{CC} = 20V)</td>
<td>1.1</td>
<td>1.9</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>Feedback Bias</td>
<td>(V_{CC} = 20V)</td>
<td>1.1</td>
<td>1.9</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>Osc - Rf Bias</td>
<td>(V_{CC} = 20V)</td>
<td>-250</td>
<td>100</td>
<td>550</td>
<td>mV</td>
</tr>
<tr>
<td>Protect Voltage</td>
<td>(I_{TANK} = -10mA)</td>
<td>-10.0</td>
<td>-8.9</td>
<td>-7.0</td>
<td>V</td>
</tr>
<tr>
<td>Detect Threshold</td>
<td></td>
<td>720</td>
<td>1440</td>
<td>1950</td>
<td>mV</td>
</tr>
<tr>
<td>Release Threshold</td>
<td></td>
<td>550</td>
<td>1200</td>
<td>1700</td>
<td>mV</td>
</tr>
</tbody>
</table>

Package Pin Description

<table>
<thead>
<tr>
<th>PACKAGE PIN#</th>
<th>PIN SYMBOL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>8L PDIP & SO</td>
<td>14L SO</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>OSC</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>TANK</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Gnd</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>OUT1</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>OUT2</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>DEMOD</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>(V_{CC})</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>RF</td>
</tr>
<tr>
<td>5,7,8,9,11,14</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

Typical Performance Characteristics

Output Switching Delay vs. Output Load

![Switching Delay vs. Output Load](image1)

\((T = 22°C, V_{CC} = 12V)\)

Output Switching Delay vs. Temperature

![Switching Delay vs. Temperature](image2)

\((V_{CC} = 12V, R_{load} = 1k\Omega)\)
The CS209A is a metal detector circuit which operates on the principle of detecting a reduction in Q of an inductor when it is brought into close proximity of metal. The CS209A contains an oscillator set up by an external parallel resonant tank and a feedback resistor connected between OSC and RF. (See Test and Applications Diagram) The impedance of a parallel resonant tank is highest when the frequency of the source driving it is equal to the tank’s resonant frequency. In the CS209A the internal oscillator operates close to the resonant frequency of the tank circuit selected. As a metal object is brought close to the inductor, the amplitude of the voltage across the tank gradually begins to drop. When the envelope of the oscillation reaches a certain level, the IC causes the output stages to switch states.

The detection is performed as follows: A capacitor connected to DEMOD is charged via an internal 30µA current source. This current, however, is diverted away from the capacitor in proportion to the negative bias generated by the tank at TANK. Charge is therefore removed from the capacitor tied to DEMOD on every negative half cycle of the resonant voltage. (See Figure 1) The voltage on the capacitor at DEMOD, a DC voltage with ripple, is then directly compared to an internal 1.44V reference. When the internal comparator trips it turns on a transistor which places a 23.6kΩ resistor in parallel to the 4.8kΩ. The resulting reference then becomes approximately 1.2V. This hysteresis is necessary for preventing false triggering.

The feedback potentiometer connected between OSC and RF is adjusted to achieve a certain detection distance range. The larger the resistance the greater the trip-point distance (See graph Demodulator Voltage vs Distance for Different RF). Note that this is a plot representative of one particular set-up since detection distance is dependent on the Q of the tank. Note also from the graph that the capacitor voltage corresponding to the greatest detection distance has a higher residual voltage when the metal object is well outside the trip point. Higher values of feedback resistance for the same inductor Q will therefore eventually result in a latched-ON condition because the residual voltage will be higher than the comparator’s thresholds.

As an example of how to set the detection range, place the metal object at the maximum distance from the inductor the circuit is required to detect, assuming of course the Q of the tank is high enough to allow the object to be within the IC’s detection range. Then adjust the potentiometer to obtain a lower resistance while observing one of the CS209A outputs return to its normal state (see Test and Applications Diagram). Readjust the potentiometer slowly toward a higher resistance until the outputs have switched to their tripped condition. Remove the metal and confirm that the outputs switch back to their normal state. Typically the maximum distance range the circuit is capable of detecting is around 0.3 inch. The higher the Q, the higher the detection distance.

For this application it is recommended to use a core which concentrates the magnetic field in only one direction. This is accomplished very well with a pot core half. The next step is to select a core material with low loss factor (inverse of Q). The loss factor can be represented by a resistance in series with the inductor which arises from core losses and is a function of frequency.

The final step in obtaining a high Q inductor is the selection of wire size. The higher the frequency the faster the decrease in current density towards the center of the wire. Thus most of the current flow is concentrated on the surface of the wire resulting in a high AC resistance. LITZ wire is recommended for this application. Considering the many factors involved, it is also recommended to operate at a resonant frequency between 200 and 700kHz. The formula commonly used to determine the Q for parallel resonant circuits is:

$$Q_p = \frac{R}{2\pi f_L L}$$
where \(R \) is the effective resistance of the tank. The resistance component of the inductor consists primarily of core losses and “skin effect” or AC resistance.

The resonant capacitor should be selected to resonate with the inductor within the frequency range recommended in order to yield the highest Q. The capacitor type should be selected to have low ESR: multilayer ceramic for example.

Detection distances vary for different metals. Following are different detection distances for some selected metals and metal objects relative to one particular circuit set-up:

Commonly encountered metals:
- Stainless steel 0.101”
- Carbon steel 0.125”
- Copper 0.044”
- Aluminum 0.053”
- Brass 0.052”

Coins:
- US Quarter 0.055”
- Canadian Quarter 0.113”
- 1 German Mark 0.090”
- 1 Pound Sterling 0.080”
- 100 Japanese Yen 0.093”
- 100 Italian Lira 0.133”

12 oz. soda can: 0.087”

Note that the above is only a comparison among different metals and no attempt was made to achieve the greatest detection distance.

A different type of application involves, for example, detecting the teeth of a rotating gear. For these applications the capacitor on DEMOD should not be selected too small (not below 1000pF) where the ripple becomes too large and not too large (not greater than 0.01µF) that the response time is too slow. Figure 1 for example shows the capacitor ripple only and Figure 2 shows the entire capacitor voltage and the output pulses for an 8-tooth gear rotating at about 2400 rpm using a 2200pF capacitor on the DEMOD pin.

Because the output stages go into hard saturation, a time interval is required to remove the stored base charge resulting in both outputs being low for approximately 3µs (see Output Switching Delay vs. Temperature graph). If more information is required about output switching characteristics please consult the factory.

Figure 1. Capacitor ripple.

Figure 2. Output pulse for an 8 tooth gear.
CS209A Test and Application Diagram

- OSC
- RF
- 20kΩ
- TANK
- Gnd
- DEMOD
- 4300pF
- CDEMOD 2200pF
- L: Core: Siemens B65531-D-R-33
 52 Turns, 6x44 AWG, Litz Unserved
 Single Polyurethane

- OUT1
 NORMALLY HI
- OUT2
 NORMALLY LO

- VCC
- RL 1kΩ
- RL 1kΩ

L: Core: Siemens B65531-D-R-33
52 Turns, 6x44 AWG, Litz Unserved
Single Polyurethane
Part Number Description

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS209AYN8</td>
<td>8L PDIP</td>
</tr>
<tr>
<td>CS209AYD8</td>
<td>8L SO Narrow</td>
</tr>
<tr>
<td>CS209AYDR8</td>
<td>8L SO Narrow (tape & reel)</td>
</tr>
<tr>
<td>CS209AYD14</td>
<td>14L SO Narrow</td>
</tr>
<tr>
<td>CS209AYDR14</td>
<td>14L SO Narrow (tape & reel)</td>
</tr>
</tbody>
</table>

Cherry Semiconductor Corporation reserves the right to make changes to the specifications without notice. Please contact Cherry Semiconductor Corporation for the latest available information.